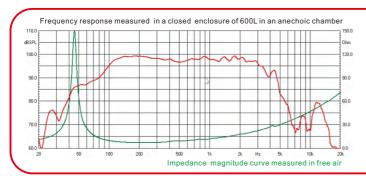


FERRITE WOOFER

MID-BASS

KEY FEATURES:

- ① 1000 W continuous program power capacity
- 2 Sensitivity: 98.5dB 1w/1m
- 3 76mm(3") high temperature inside/outsdie CCAW voice coil
- 4 7DF paper cone, made in USA


- ⑤ Unique eight-sided (Octagon) die-cast aluminum basket
- 6 FEA optimized magent system design for low distortion and minimum power compession
- 7 Ideal for high quality compact 2 or 3-way systems

GENERAL SPECIFICAT	IONS
Nominal Diameter	380mm /15inch
Rated Impedance	8 ohm
Nominal Power handling ¹	500 Watts
Program Power ²	1000 Watts
Sensitivity(1w/1m) ³	98 dB
Frequency Range⁴	45 ~ 3000Hz
Minimum Impedance(Zmin)	6.7 ohm
Voice Coil Diameter	76mm /3inch
Voice Coil Material	CCAW
Former Material	Glass Fiber
Voice Coil Winding Depth	18 mm
Number of layers	2(inside/outside)
Magnet gap depth	10 mm
Basket	Cast Aluminum
Flux Density	1.2 T
Magnet Out Diameter/Wgt	190mm / 78 oz

THIELE - SMALL PARAMETERS ⁵		
Resonance frequency	Fs	45 Hz
DC resistance	Re	5.6 ohm
Mechanical factor	Qms	10.5
Electrical factor	Qes	0.41
Total factor	Qts	0.40
Mechanical compliance	Cms	0.14 mm/N
Mechanical resistance of total-driver losses	Rms	2.4 kg/s
Effective Moving Mass	Mms	90 g
Half-space efficiency	Eff	3.3%
BL Factor	BL	18.7 T.m
Equivalent Cas air load	Vas	150 liters
Effective piston area	Sd	$0.0887 m^2$
Max. linear excursion ⁶	Xmax	± 6.5 mm
Max. excursion before damage	Xdam	±18.2mm
Voice coil inductance(1kHz)	Le	1.1 mH
Efficiency Bandwidth Product	EBP	109

MOUNTING INFORMATION		
Overall Diameter	390 mm	
Bolt Circle Diameter	398 mm	
Bolt Hole Diameter	6.5 mm	
Baffle Cutout Diameter	353 mm	
Overall Depth	165 mm	
Air volume occupied by driver	5.7 liters	
Net Weight	8.4 kg	
Shipping Weight	9.5 kg	
Shipping Box	430x430x205 mm	

NOTES:

- 1. AES standard
- 2. Program Power is defined as 3 dB greater than the nominal power handling. 3. Sensitivity is measured at 1W input on rated impedance at 1m on axis.
- 4. Frequency range is defined as the band of frequencies delineated by the lower and upper limits where the output level drops by 10dB below the rated sensitivity
- ${\tt 5.\,T/S\,parameters\,measured\,with\,laser\,system\,BEFORE\,preconditioning\,test}.$
- 6. The maximum linear excursion is calculated as: (Hvc-Hg)/2+Hg/4 where Hvc is the voice coil depth and Hg is the gap depth.
 7. Vb: Net internal volume of box after subtracting the volume of internal objects