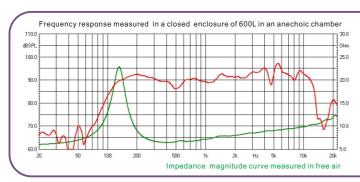
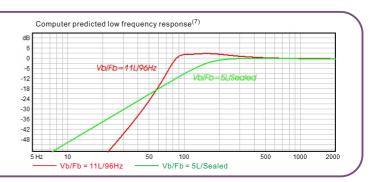


KEY FEATURES:

- 1 200 W continuous program power capacity
- 2 High efficiency: 92dB 1w/1m
- $\ensuremath{\ \, \textbf{ 3)}} \ \text{Extended mid response up to 9kHz}$
- 4 1.5" flat copper clad aluminum voice coil
- 5 Copper shorting ring ensures extremely linear impedance and reduced distortion figure
- 6 Ideal for the use in array systems, midrange application


GENERAL SPECIFICATIONS		
Nominal Diameter	200mm /6.5inch	
Rated Impedance	8 ohm	
Nominal Power handling ¹	100 Watts	
Program Power ²	200 Watts	
Sensitivity(1w/1m) ³	92 dB	
Frequency Range⁴	125 ~ 9000Hz	
Minimum Impedance(Zmin)	6.4 ohm	
Voice Coil Diameter	38mm /1.5inch	
Voice Coil Material	Edgewound CCAV	
Former Material	Fiberglass	
Voice Coil Winding Depth	8 mm	
Number of layers	1	
Magnet gap depth	6 mm	
Basket	Cast Aluminum	
Flux Density	1.05 T	
Magnet Out Diameter/Wgt	120mm/30 oz	


THIELE - SMALL PARAMETERS ⁵		
Resonance frequency	Fs	131 Hz
DC resistance	Re	5.4 ohm
Mechanical factor	Qms	3.3
Electrical factor	Qes	1.03
Total factor	Qts	0.78
Mechanical compliance	Cms	0.11 mm/N
Mechanical resistance of total-driver losses	Rms	3.36 kg/s
Effective Moving Mass	Mms	13.5 g
Half-space efficiency	Eff	0.62%
BL Factor	BL	7.65 T.m
Equivalent Cas air load	Vas	2.9 liters
Effective piston area	Sd	$0.0139 \; m^2$
Max. linear excursion ⁶	Xmax	±2.5 mm
Max. excursion before damage	Xdam	±6 mm
Voice coil inductance(1kHz)	Le	0.16 mH
Efficiency Bandwidth Product	EBP	127

MOUNTING INFORMATION		
Overall Diameter	162 mm	
Bolt Circle Diameter	172 mm	
Bolt Hole Diameter	5 mm	
Baffle Cutout Diameter	147 mm	
Overall Depth	78 mm	
Air volume occupied by driver	0.7 liters	
Net Weight	2.1 kg	
Shipping Weight	2.3 kg	
Shipping Box	172x172x95mm	

Also available in 16ohm, data upon request.

NOTES:

- 1. AES standard
- 2. Program Power is defined as 3 dB greater than the nominal power handling. 3. Sensitivity is measured at 1W input on rated impedance at 1m on axis.
- 4. Frequency range is defined as the band of frequencies delineated by the lower and upper limits where the output level drops by 10dB below the rated sensitivity.
- ${\tt 5.\,T/S\,parameters\,measured\,with\,laser\,system\,BEFORE\,preconditioning\,test}.$
- 6. The maximum linear excursion is calculated as: (Hvc-Hg)/2+Hg/4 where Hvc is the voice coil depth and
- Hg is the gap depth.
 7. Vb: Net internal volume of box after subtracting the volume of internal objects.