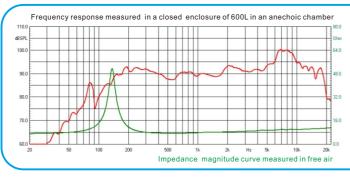
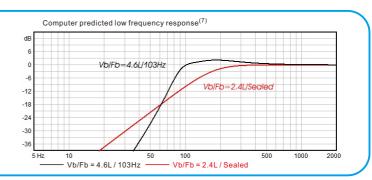
※ 134 ~ 18.7k Hz

KEY FEATURES:


- ① 80W continuous program power capacity
- 2 High sensitivity: 91dB 1w/1m
- 4 Vented voice coil former increases airflow to provide enhanced cooling
- ⑤ Strong and light fiberglass cone with polycotton edge remains rigid to higher frequencies
- ⑥ High grade neodymium ring allows a high force factor(B) and lighter weight
- (7) Ideal for mini array systems, full range application


GENERAL SPECIFICATIONS		
Nominal Diameter	100mm /4inch	
Rated Impedance	8 ohm	
Nominal Power handling ¹	40 Watts	
Program Power ²	80 Watts	
Sensitivity(1w/1m) ³	88 dB	
Frequency Range⁴	134 ~ 18.7k Hz	
Minimum Impedance(Zmin)	7 ohm	
Voice Coil Diameter	20mm /0.8inch	
Voice Coil Material	CCAW	
Former Material	Glass Fiber	
Voice Coil Winding Depth	6 mm	
Number of layers	2	
Magnet gap depth	4 mm	
Basket	Pressed Steel	
Flux Density	1.2 T	
Magnet Out Diameter/Wgt	Neodymium	

THIELE - SMALL PARAMETERS ⁵		
Resonance frequency	Fs	141 Hz
DC resistance	Re	6.4 ohm
Mechanical factor	Qms	7.5
Electrical factor	Qes	0.81
Total factor	Qts	0.73
Mechanical compliance	Cms	0.36 mm/N
Mechanical resistance of total-driver losses	Rms	0.423 kg/s
Effective Moving Mass	Mms	3.6 g
Half-space efficiency	Eff	0.47%
BL Factor	BL	5.0 T.m
Equivalent Cas air load	Vas	1.4 liters
Effective piston area	Sd	$0.0053 \; m^2$
Max. linear excursion ⁶	Xmax	± 2 mm
Max. excursion before damage	Xdam	±5.5mm
Voice coil inductance(1kHz)	Le	0.17 mH
Efficiency Bandwidth Product	EBP	174

MOUNTING INFORMATION	
Overall Diameter	127 mm
Bolt Circle Diameter	115 mm
Bolt Hole Diameter	5 mm
Baffle Cutout Diameter	103 mm
Overall Depth	55 mm
Air volume occupied by driver	0.1 liters
Net Weight	0.22 kg / pc
Shipping Weight	6 kg / 24pcs
Shipping Box	430*340*225mm

NOTES:

- 1. AES standard
- 2. Program Power is defined as 3 dB greater than the nominal power handling. 3. Sensitivity is measured at 1W input on rated impedance at 1m on axis.
- 4. Frequency range is defined as the band of frequencies delineated by the lower and upper limits where the output level drops by 10dB below the rated sensitivity
- $5.\, Thiele\text{-}Small\ parameters\ are\ measured\ with\ Klippel\ DA\ LPM\ module\ BEFORE\ preconditioning\ test.$ $6. The \ maximum \ linear \ excursion \ is \ calculated \ as: \ (Hvc-Hg)/2+Hg/4 \ where \ Hvc \ is \ the \ voice \ coil \ depth \ and \ and \ depth \ and \ depth \ and \ and \ depth \ and \$
- 7. Vb: Net internal volume of box after subtracting the volume of internal objects

Hg is the gap depth.