

FERRITE WOOFER

MID-BASS

KEY FEATURES:

- ① 600W continuous program power capacity
- 2 94dB sensitivity, 1w/1m
- ③ 65mm(2.5") copper clad aluminum voice coil with fiberglass former
- 4 FEA optimized magnet system design for lower distortion and minimum power compression
- ⑤ Aluminum demodulating ring for lower distortion
- 6 Ideal for high quality compact 2 or 3-way systems

GENERAL SPECIFICATIONS		
Nominal Diameter	250mm /10inch	
Rated Impedance	8 ohm	
Nominal Power handling ¹	300 Watts	
Program Power ²	600 Watts	
Sensitivity(1w/1m) ³	94 dB	
Frequency Range ⁴	61 ~ 4000 Hz	
Minimum Impedance(Zmin)	6.6 ohm	
Voice Coil Diameter	65mm /2.5inch	
Voice Coil Material	CCAW	
Former Material	Glass Fiber	
Voice Coil Winding Depth	15 mm	
Number of layers	4	
Magnet gap depth	9.5 mm	
Basket	Cast Aluminum	
Flux Density	0.8T	
Magnet Out Diameter/Wgt	156mm / 52 oz	

THIELE - SMALL PARAMETERS ⁵		
Resonance frequency	Fs	61 Hz
DC resistance	Re	5.3 ohm
Mechanical factor	Qms	10.7
Electrical factor	Qes	0.38
Total factor	Qts	0.36
Mechanical compliance	Cms	0.16 mm/N
Mechanical resistance of total-driver losses	Rms	1.5 kg/s
Effective Moving Mass	Mms	41 g
Half-space efficiency	Eff	1.68%
BL Factor	BL	15 T.m
Equivalent Cas air load	Vas	29 liters
Effective piston area	Sd	$0.0356 m^2$
Max. linear excursion ⁶	Xmax	± 5.5 mm
Max. excursion before damage	Xdam	±17.3mm
Voice coil inductance(1kHz)	Le	1.03 mH
Efficiency Bandwidth Product	EBP	162

MOUNTING INFORMATION		
Overall Diameter	266 mm	
Bolt Circle Diameter	252 mm	
Bolt Hole Diameter	6.5 mm	
Baffle Cutout Diameter	232 mm	
Overall Depth	117 mm	
Air volume occupied by driver	2 liters	
Net Weight	4.9 kg	
Shipping Weight	5.5 kg	
Shipping Box	275x275x145mm	

NOTES:

- 1. AES standard
- 2. Program Power is defined as 3 dB greater than the nominal power handling. 3. Sensitivity is measured at 1W input on rated impedance at 1m on axis.
- 4. Frequency range is defined as the band of frequencies delineated by the lower and upper limits where the output level drops by 10dB below the rated sensitivity
- ${\tt 5.\,T/S\,parameters\,measured\,with\,laser\,system\,BEFORE\,preconditioning\,test}.$
- 6. The maximum linear excursion is calculated as: (Hvc-Hg)/2+Hg/4 where Hvc is the voice coil depth and
- Hg is the gap depth.
 7. Vb: Net internal volume of box after subtracting the volume of internal objects.